Математические дроби – просто о сложном

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Математические дроби – просто о сложном». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


В математике выделяют дроби правильные и неправильные. Правильные — те, у которых числитель меньше знаменателя. Например: 1/3, 2/5, 4/12. Но бывает и так, что числитель становится больше знаменателя. Если объяснять предметно, то взято больше частей пирога, чем было тех, на которые он поделен. Такое вполне возможно и в жизни, и в математике.

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

График а (, ) к рублю (RUB)

График а (, ) к рублю (RUB)

Приведение дробей к общему знаменателю

Любые две дроби можно привести к общему знаменателю. Обычно дроби приводят к наименьшему общему знаменателю (НОК) – минимальное число, которое делится на каждый знаменатель.

Например, для дробей 1/4 и 1/3 общий знаменатель общий знаменатель равен 12, для дробей 1/6 и 1/3 общий знаменатель будет 6).

Для приведения дроби к общему знаменателю нужно:
1. Найти общий знаменатель – НОК (для дробей 1/6 и 1/9 общий знаменатель будет равен 18);
2. Найти множитель для каждой дроби – разделить общий знаменатель на знаменатель исходной дроби (для дроби 1/6 множитель будет равен 3 (18:6=3), для дроби 1/9 – 2 (18:9=2)).
3. Умножить числитель дроби на множитель (для дроби 1/6 получаем 1*3/6*3=3/18, для дроби 1/9 получаем 2*1/2*9=2/18)

Что нужно знать о дробях?

1. Дробь — число нецелое, оно обозначает количество долей целого.

2. Дробь меньше целого.

3. Чем на большее число долей поделено целое, тем эти доли меньше и наоборот — чем долей меньше, тем они, соответственно, больше.

Для обозначения долей в математике используют понятие обыкновенная дробь. С ее помощью можно записать абсолютно любое необходимое количество долей.

Обыкновенная дробь представляет собой две части, именуемые числителем и знаменателем. Записываются они разделенными горизонтальной чертой либо наклонной вправо линией. Знаменатель пишется внизу либо справа от дробной черты, он показывает общее количество частей от целого, на которое оно было поделено. А числитель пишется вверху или слева от дробной черты и показывает, сколько долей целого сейчас взяли.

Вернемся к нашему пирогу. Очевидно, что разделить его реально на сколько угодно равных частей. В зависимости от того, на сколько частей его разделили, меняется и знаменатель дроби. У пирога, разделенного одной прямой линией на две части, знаменатель будет равен 2, у разделенного на три части — 3 и т. д. Числитель же, в свою очередь, показывает, сколько частей сейчас взято. Если взяли только одну часть из двух, то получится дробь 1/2, только две из трех — 2/3 и т. д.

Читайте также:  Выплаты за третьего ребенка в 2023 году

Если сравниваются дроби с одинаковыми знаменателями, то очевидно, что большей будет та, числитель у которой больше.

Пример:

1/5 , так как знаменатели одинаковы, а в числителе 1 меньше 5.

Если сравниваются дроби с одинаковыми числителями, то большей будет та, знаменатель у которой меньше.

Пример:

1/2 > 1/8, так как числители одинаковы, а в знаменателе 8 больше 2.

Дроби же с разными знаменателями так просто не сравнишь. Нужно сперва определить их общий знаменатель и привести к нему обе дроби. Правила этой операции были приведены выше. Получим дроби, сравнить которые можно очень легко.

Пример:

Сравниваем дроби 2/5 и 1/10. Для этого приводим их к общему знаменателю — 10. Получаем 4/10 и 1/10. Теперь сравниваем дроби, уже имеющие одинаковые знаменатели: 4/10 > 1/10.

Есть один секрет, который нужно запомнить. Если одна из сравниваемых дробей неправильная, то она всегда больше правильной. Если подумать и вспомнить свойства дробей, то все становится понятно. Ведь неправильная дробь всегда будет больше единицы, тогда как правильная, наоборот, всегда будет меньше.

Задание 1

Найдите разность дробей 8/14

и

3/14

.

Решение

У данных дробей один и тот же знаменатель, следовательно:

8/14

3/14

=

8-3/14

=

5/14

Задание 2

Найдите разность дробей 6/7

и

9/20

.

Решение

Сперва приводим дроби к наименьшему общему знаменателю.
Наименьшее общее кратное обоих знаменателей равняется 140. Значит, дополнительный множитель для первой дроби – 20, для второй – 7.

6/7

=

6⋅20/7⋅20

=

120/140 9/20

=

9⋅7/20⋅7

=

63/120

Теперь у нас дроби с одинаковыми знаменателями, и мы можем вычесть из первой вторую:

120/140

63/140

=

120-63/140

=

57/140

Задание 3

Отнимите из дроби 3 5/7

дробь 2

3/7

.

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 — 0,2)/15.
  2. Алгебраические — состоят из переменных, например, (x + y)/(x — y). В этом случае значение дроби зависит от данных значений букв.

Вычитание дробей из целого числа

Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

Читайте также:  Штраф за пересечение двойной сплошной

7 — 4/9 = (7 х 9)/9 — 4/9 = 53/9 — 4/9 = 49/9.

Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

Правила сложения дробей с разными знаменателями очень простые.

Рассмотрим правила сложения дробей с разными знаменателями по шагам:

1. Найти НОК (наименьшее общее кратное) знаменателей. Полученный НОК будет общим знаменателем дробей;

2. Привести дроби к общему знаменателю;

3. Сложить дроби, приведенные к общему знаменателю.

На простом примере научимся применять правила сложения дробей с разными знаменателями.

Сложение и вычитание дробей с разными знаменателями

Складывать и вычитать дроби с разными знаменателями можно только тогда, когда в процессе вычисления дроби приведены к одному общему знаменателю.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, являющихся знаменателями заданных дробей.

К числителям заданных дробей нужно поставить дополнительные множители, равные отношению НОК и соответствующего знаменателя.

Числители заданных дробей умножаются на свои дополнительные множители, получаются числители дробей с единым общим знаменателем. Знаки действий («+» или «-») в записи дробей, приводимых к общему знаменателю, сохраняются перед каждой дробью. У дробей с общим знаменателем знаки действий сохраняются перед каждым приведенным числителем.

Только теперь можно сложить или вычесть числители и подписать под результатом общий знаменатель.

Внимание! Если в результирующей дроби у числителя и знаменателя есть общие множители, то дробь надо сократить. Неправильную дробь желательно перевести в смешанную дробь. Оставить результат сложения или вычитания, не сократив дробь, где это возможно, — это неоконченное решение примера!

Сложение и вычитание дробей с разными знаменателями. Правило. Чтобы сложить или вычесть дроби с разными знаменателями, нужно их сначала привести к наименьшему общему знаменателю, а потом производить действия сложения или вычитания как с дробями с одинаковыми знаменателями.

Калькулятор дробей онлайн

Обыкновенная дробь (дробное число) — это представление рациональных чисел или математических величин в виде незаконченной операции деления n/m, обозначающее из скольких равных долей состоит единица числа. Верхнее число (n) называется числителем и показывает количество взятых долей, нижнее число (m), знаменатель, показывает на сколько долей разделена единица. Дроби подразделяются на правильные (числитель меньше знаменателя) и неправильные (числитель больше знаменателя). Также выделяются десятичные дроби, у которых знаменатели образованы от степени числа 10n (10, 100, 1000 и т.д.), записываются как 0.1, 0.01, 0.001, соответственно.

Смешанные числа: определения, примеры

Смешанное число — это число, состоящее из натурального числа и обыкновенной дроби. Пишут в виде n

Где n — целая часть, — дробная часть.

Смешанное число равно сумме своей целой и дробной части. То есть

Примеры смешанных чисел

Каждое такое смешанное число содержит целую и дробную части.

Чтобы точно определять, какая именно перед вами дробь, запомните:

  • Дробь виданазывается правильной дробью. В ней числитель всегда меньше знаменателя.
  • Дробь виданазывается неправильной. В таких дробях числитель больше знаменателя или равен ему.
  • Дробь виданазывается смешанной дробью/смешанным числом. Такая дробь состоит из целой части (натуральное число) и дробной части.
Читайте также:  Как составить авторский договор

Смешанные числа можно складывать, вычитать, умножать и делить. Давайте узнаем, как именно это делать.

Примеры для самопроверки

Теория — это, конечно, хорошо. Но без практики — никуда. Пора потренироваться в решении примеров и закрепить тему сравнения дробей.

Пример 1. Сравните дроби:

Ответ: по правилу сравнения дробей с одинаковыми знаменателями, больше та дробь, у которой числитель больше. Это значит, что

Пример 2. Сравните дроби:

Ответ: по правилу сравнения дробей с разными знаменателями и одинаковыми числителями, больше та дробь, чей знаменатель меньше. Это значит, что

Пример 3. Сравните дроби:

Как решаем:

Ответ:.

  • По правилу сравнения дробей с разными числителями и знаменателями, сначала нужно привести дроби к общему знаменателю:
  • Наименьшее общее кратное — 15:
    15 : 15 = 1
    15 : 5 = 3
  • Умножаем первую дробь на дополнительный множитель 1:
  • Умножаем вторую дробь на дополнительный множитель 3:
  • Дроби приведены к общему знаменателю:
  • Сравниваем числители получившихся дробей: 3

Пример 4. Найдите разность:

Как решаем:

  • Смешанные дроби превращаем в неправильные:
  • Чтобы сравнить дроби с разными числителями и знаменателями, нужно привести их к общему знаменателю.
  • Наименьшее общее кратное — 42:
    42 : 7 = 6
    42 : 6 = 7
  • Умножаем первую дробь на дополнительный множитель 6:
  • Умножаем вторую дробь на дополнительный множитель 7:
  • Дроби приведены к общему знаменателю.
  • Если знаменатели одинаковые — больше та дробь, числитель которой больше.
    Мы видим, что вычитаемое меньше уменьшаемого, значит можем найти разность:

Для того чтобы получить сумму слагаемых четыре восьмых и две восьмых, следует сложить числители четыре и два.

4 8 + 2 8 = 4 + 2 8 = 6 8

Делением называют действие в арифметике, которое позволяет узнать, какое количество раз одно число возможно вместить в другом числе. вдобавок деление можно наименовать действием, противоположным умножению.

Как разделить обыкновенную дробь на вторую обыкновенную дробь?

Для решения необходимо совершить некоторый перечень действий:

  • Числитель одной дроби умножаем на знаменатель другой дроби. Результат умножения записываем в качестве числителя новой дроби.
  • Знаменатель первой умножаем на числитель второй, итоговое решение помещаем на место знаменателя в получившейся дроби.

Разобраться в таких сложных на первый взгляд правилах всегда можно либо при помощи примеров, либо при помощи работы с онлайн калькулятором для дробей.

Имеем дроби 3\4 и 5\6. Необходимо умножить 3 на 6 и 4 на 5. Ответ: 18/20=9/10

Как разделить дробь на натуральное целое число?

Процесс решения такой задачи состоит из нескольких последовательных действий:

  • Из целого числа нужно сделать неправильную дробь, где числитель будет равен этому же натуральному числу. В качестве знаменателя часто указывают единицу.
  • Затем производят деление по упомянутому выше правилу.

Имеем натуральное число 2 и дробь 1\2. Натуральное число преобразуем в 2\1. Делим 2\1 на 1\2. Ответ: 4/1=4.

Как делить дробь на смешанное число?

Процесс решения такой задачи состоит из нескольких последовательных действий:

  • Первым делом необходимо сделать из смешанной дроби дробь неправильного типа;
  • Теперь простую и неправильную дробь делим по упомянутым ранее правилам.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *